Hall Ticket Number:

Code No. : 16110 N(H)

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (CBCS) VI-Semester Main Examinations, May-2019

Probability and Statistics for Engineers

(Open Elective-VII)

Time: 3 hours

Max. Marks: 70

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Q. No.	Stem of the question	M	L	СО	PO
	Part-A $(10 \times 2 = 20 \text{ Marks})$				
1.	State the properties of joint Cumulative Distribution function.	2	1,2	1	1
2.	Define conditional probability density function of X given $Y = y$.	2	1,2	1	1
3.	State the properties of Joint Characteristic Function.	2	1,2	2	1
4.	Find the relation between Co-variance and Variance.	2	1,2	2	1
5.	Define Population and Sample with examples.	2	1,2	3	1
6.	Define Estimator and Estimate.	2	1,2	3	1
7.	State the difference between Linear and Curve Linear Regression.	2	1,2	4	1
8.	What is Regression and Explain its importance.	2	1,2	4	1
9.	When did you say that two random variables are independent?	2	1,2	1	1
10.	What is likelihood function?	2	1,2	3	1
	$Part - B (10 \times 5 = 50 Marks)$				
11.a)	Three balls are drawn at random without replacement from a box containing 2 white; 3 red and 4 black balls. If X denotes the number of white balls drawn and Y denotes the number of red balls drawn; find the joint probability distribution of (X, Y) .	5	1,2	1	1
b)	Two-dimensional random variable (X, Y) have the joint density $f(x, y) = \begin{cases} 8 xy , 0 < x < y < 1 \\ 0, otherwise \end{cases}$ i) Find P (X < ½; Y < ½). ii) Find the marginal and conditional distributions. iii) Are X and Y independent? Give reasons for your answer.	5	3	1	1
12. a)	Two random variables X and Y have the following joint probability density function: $f(x, y) = \begin{cases} 2 - x - y; \ 0 \le x \le 1, \ 0 \le y \le 1 \\ 0, \ otherwise \end{cases}$ Find i) Marginal probability density functions of X and Y;	5	3	2	1
	 ii) Conditional density functions; iii) Var (X) and Var (Y); and iv) Covariance between X and Y. 				

b)	The joint prob	ability d	istribution	n of X and	d Y is give	en by the f	ollowing	5	1,2	2	1
	table:				a mater		10.050003				
	X	1	3		9		de la fi				
	Y	1/0	1.10		1/10						
	1	1/8	1/2		1/12						
	2	1/4	1/		0		All. Incate				
	53	1/8	1/2	24	1/12						
	i) Find theii) Find theiii) Find theiv) Are X and	condition covarian	hal distrib	ution of `							
3. a)	Estimate α as	nd β by	the metho	od of mor	ments:			5	4	3	1
	$f(x;\alpha,\beta) = \frac{1}{2}$	β ^α γ ^α	$x - 1 - \beta x$								
	$J(x;\alpha,\beta) = \frac{1}{2}$	$\Gamma(\alpha)^{\lambda}$	е,(J ≤ X < ∞							
b)	The sample v	alues fro	m popula	tion with	p.d.f:			5	4	3	1
	$f(x) = (1 + \theta)$	$x^{\theta}, 0 < x$	$<1, \theta > 0,$, are give	n below :						
	0.46, 0.38, 0.6 θ by i) method of	moment	s and		44, 0.59, 0	.60. Find	the estimate				
	ii) maximum						Contrecto			-	
4. a)	The expected to the age of certain date w the elapsed ti	the part. vere recon	The ages rded in op	of 10 of erating he	these parts ours. When	that were n each part	in use on a	5	1,2	4	1
	Age of Part (Remaining li										
	Determine th	e regress	ion curve	using the	e non-linea	r form Y	$=ab^{X}$				
b)	Define curve Y is given by					sity functi	ion of X and	5	3	4	1
	$f(x, y) = \left\{ \right.$	x + y, 0	x < 1	,0 < <i>y</i> <	1			1			
	Find	0,00000	1100								
	i) the regress	sion curv	e of Y on	X. and							
	ii) the regress			-				-			
							<i>a</i> 1	-			
15.a)	For bivariate $P(X \le 1);$ $P(Y \le 3/X \le 1)$	$P(Y \leq$	3); P	$(X \leq 1;$				5	1,2	1	1
	X	1	2	3	4	5	6				
	Y	6			0.100						
	0	0	0	1/32	2/32	2/32	3/32				
	1	1/16	1/16	1/8	1/8	1/8	1/8				
	2	1	1								

Contd... 3

			00	ue no		LIV I	l'an
b)	occurring and l	tossed four times. Let X de let Y denote the longest string he joint distribution of X and Y X, Y).	of heads occurring.	5	3	2	1
16.a)	value μ and var mean value μ ,	is a random sample of size 3 f riance σ^2 . T ₁ , T ₂ , and T ₃ are the where - X ₃ , T ₂ = 2 X ₁ + 3X ₂ - 4X ₃	e estimators used to estimate	5	1,2	. 3	1
	$T_3 = \frac{1}{3} (\lambda X_1 + \lambda Z_2)$						
	ii) Find the viii) With this	d T ₂ unbiased estimators? value of λ such that T ₃ is unbivalue λ is T ₃ a consistent estitute the best estimator?					
b)	of weeks of e following data Job efficiency Weeks of emp -ement Determine the	loy: 2 4 1 3 5 (Y) coefficients of regression an	mple of 10 employees, the 80 90 30 75 70 9 12 2 7 5 d regression equation using	5	1,2	4	1
17. a)	Answer any <i>t</i> rains arr Two trains arr one train stops	form $Y = a + b_1 X + b_2 X^2$ we of the following: ive at a station at random bet for 5 minutes and the other for bility that the 2 trains meet be	ween 7 A.m. and 7.30 A.m. r x min. for what value of x;	1	4	1	1
b)	The amount o a large corpor	f money spent on research and ation is believed to have an ef ars, the following data have be	l development (R and D) by fect on their gross sales. For	1	1,2	4	1
	Year Number 1 2	Amount Spent on R and D (in Rs. 100,000's) 1.9 3.4	Gross Sales (in Rs. 10,00,000's) 2.8 3.2				
	3	6.5	3.0				
	4	5.7	4.0				
	5	2.8	4.6				
	6	2.3	3.8				
	7 8	6.2	3.4 3.2				
	8	5.0	4.7				
	9		5.2				
	10	51					
	<u>10</u> 11	5.3	2.8				

Contd... 4

:: 3 ::

1

Code No. : 16110 N(H)

(ExAmple Address)

c) The joint probability distribution of a pair of random variables is given 5 1,2 2 1 by the following table:

X	1	2	3
Y			
1	0.1	0.1	0.2
2	0.2	0.3	0.1

Find:

i) The marginal distributions.

ii) The conditional distribution of X given Y = 1.

iii) $P \{ (X + Y) < 4 \}.$

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

S. No.	Criteria for questions	Percentage
1	Fundamental knowledge (Level-1 & 2)	70
2	Knowledge on application and analysis (Level-3 & 4)	30
3	*Critical thinking and ability to design (Level-5 & 6)	n and - stell
	(*wherever applicable)	1. 1. 500

~~~~~~~

Free many and a set of the interval of a method between 7 (4, m) and 50 m area main many for 1 with more and that areas for x and the value of the a will the probability that the 1 mean meet be equid to 1/20.

a single convertion is believed within a classification their grows when Fin