VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD

B.E. (CBCS) VI-Semester Main Examinations, May-2019

Probability and Statistics for Engineers
(Open Elective-VII)
Time: $\mathbf{3}$ hours
Max. Marks: 70
Note: Answer ALL questions in Part-A and any FIVE from Part-B

b) The joint probability distribution of X and Y is given by the following table:

X	1	3	9
1	$1 / 8$	$1 / 24$	$1 / 12$
2	$1 / 4$	$1 / 4$	0
53	$1 / 8$	$1 / 24$	$1 / 12$

i) Find the marginal probability distribution of Y.
ii) Find the conditional distribution of Y given that $\mathrm{X}=3$.
iii) Find the covariance of X and Y .
iv) Are X and Y independent?
13. a) Estimate α and β by the method of moments:
$f(x ; \alpha, \beta)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}, 0 \leq \mathrm{x}<\infty$
b) The sample values from population with p.d.f:
$f(x)=(1+\theta) x^{\theta}, 0<x<1, \theta>0$, are given below :
$0.46,0.38,0.61,0.82,0.59,0.53,0.72,0.44,0.59,0.60$. Find the estimate θ by
i) method of moments and
ii) maximum likelihood estimation.
14. a) The expected remaining life of an electronic part is believed to be related to the age of the part. The ages of 10 of these parts that were in use on a certain date were recorded in operating hours. When each part burned out, the elapsed time was recorded. The results were as follows:
Age of Part (in hrs) : $\quad \begin{array}{lllllllll}40 & 65 & 90 & 5 & 30 & 10 & 80 & 85 & 70\end{array} 25$
Remaining life(in hrs): $\begin{array}{lllllll}30 & 20 & 10 & 8040 & 65 & 15 & 15 \\ 20 & 50\end{array}$
Determine the regression curve using the non-linear form $Y=a b^{X}$
b) Define curve of regression of Y on X . the joint density function of X and Y is given by:

$$
f(x, y)=\left\{\begin{array}{l}
x+y, 0<x<1,0<y<1 \\
0, \text { otherwise }
\end{array}\right.
$$

Find
i) the regression curve of Y on X , and
ii) the regression curve of X and Y .
15.a) For bivariate probability distribution of $(\mathrm{X} ; \mathrm{Y})$ given below; find
$\mathrm{P}(\mathrm{X} \leq 1) ; \quad \mathrm{P}(\mathrm{Y} \leq 3) ; \quad \mathrm{P}(\mathrm{X} \leq 1 ; \quad \mathrm{Y} \leq 3) ; \quad \mathrm{P}(\mathrm{X} \leq 1 / \mathrm{Y} \leq 3) ;$ $\mathrm{P}(\mathrm{Y} \leq 3 / \mathrm{X} \leq 1)$ and $\mathrm{P}(\mathrm{X}+\mathrm{Y} \leq 4)$.

X	1	2	3	4	5	6
$\mathbf{0}$	0	0	$1 / 32$	$2 / 32$	$2 / 32$	$3 / 32$
1	$1 / 16$	$1 / 16$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$
2	$1 / 32$	$1 / 32$	$1 / 64$	$1 / 64$	0	$2 / 64$

$\begin{array}{llll}5 & 1,2 & 2 & 1\end{array}$
$5 \quad 4 \quad 3 \quad 1$

5431
$5 \quad 1,2 \quad 4 \quad 1$
$\begin{array}{llll}5 & 3 & 4 & 1\end{array}$
$\begin{array}{llll}5 & 1,2 & 1 & 1\end{array}$
b) A fair coin is tossed four times. Let X denote the number of heads occurring and let Y denote the longest string of heads occurring.
i) Determine the joint distribution of X and Y ; and
ii) Find $\operatorname{Cov}(X, Y)$.
16.a) X_{1}, X_{2}, and X_{3} is a random sample of size 3 from a population with mean value μ and variance $\sigma^{2} . T_{1}, T_{2}$, and T_{3} are the estimators used to estimate mean value μ, where
$\mathrm{T}_{1}=\mathrm{X}_{1}+\mathrm{X}_{2}-\mathrm{X}_{3}, \mathrm{~T}_{2}=2 \mathrm{X}_{1}+3 \mathrm{X}_{2}-4 \mathrm{X}_{3}$, and
$T_{3}=\frac{1}{3}\left(\lambda X_{1}+X_{2}+X_{3}\right) / 3$
i) Are T_{1} and T_{2} unbiased estimators?
ii) Find the value of λ such that T_{3} is unbiased estimator of μ.
iii) With this value λ is T_{3} a consistent estimator?
iv) Which is the best estimator?
b) The job rating efficiency of an employee seem to be related to the number of weeks of employment. For a random sample of 10 employees, the following data were observed:
$\begin{array}{llllllllllll}\text { Job efficiency (X) } & 55 & 50 & 20 & 55 & 75 & 80 & 90 & 30 & 75 & 70\end{array}$
Weeks of employ: $\begin{array}{lllllllllll}2 & 4 & 1 & 3 & 5 & 9 & 12 & 2 & 7 & 5\end{array}$ -ement(Y)
Determine the coefficients of regression and regression equation using the non-linear form $Y=a+b_{1} X+b_{2} X^{2}$
17. Answer any two of the following:
a) Two trains arrive at a station at random between 7 A.m. and 7.30 A.m. one train stops for 5 minutes and the other for $x \min$. for what value of x; will the probability that the 2 trains meet be equal to $1 / 3$?
b) The amount of money spent on research and development (R and D) by a large corporation is believed to have an effect on their gross sales. For the past 12 years, the following data have been recorded:

Year Number	Amount Spent on R and D (in Rs. 100,000 's)	Gross Sales (in Rs. $10,00,000$'s)
1	1.9	2.8
2	3.4	3.2
3	6.5	3.0
4	5.7	4.0
5	2.8	4.6
6	2.3	3.8
7	6.2	3.4
8	7.6	3.2
9	5.0	4.7
10	5.3	5.2
11	4.7	2.8
12	5.2	5.0

Determine the coefficients of regression and regression equation using the non-linear form $Y=a+b_{1} X+b_{2} X^{2}$

5	3	2	1

Contd... 4
c) The joint probability distribution of a pair of random variables is given
$\begin{array}{llll}5 & 1,2 & 2 & 1\end{array}$ by the following table:

Y^{X}	1	2	3
1	0.1	0.1	0.2
2	0.2	0.3	0.1

Find:
i) The marginal distributions.
ii) The conditional distribution of X given $\mathrm{Y}=1$.
iii) $P\{(X+Y)<4\}$.

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

S. No.	Criteria for questions	Percentage	
1	Fundamental knowledge (Level-1 \& 2)	70	
2	Knowledge on application and analysis (Level-3 \& 4)	30	
3	*Critical thinking and ability to design (Level-5 \& 6) (*wherever applicable)	-	

